AGS 3 Name

Name: _____ Period: ____ Date: _____

Assignment 1.4

Use the functions $f(x) = \sqrt{x} - 1$ and $g(x) = x^2 + 7$

1. a. Calculate f(16) and g(3).

- b. Write the ordered pair for f(16) and g(3).
- c. What do the ordered pairs you wrote in b imply?
- d. Find the inverse function for f(x). Are f(x) and g(x) inverse functions? Explain.

2. Match each function with its inverse.

f(x)	$f^{-1}(x)$
$\underline{\qquad} f(x) = 3x + 5$	a. $f^{-1}(x) = log_5 x$
$\underline{\qquad} f(x) = x^5$	b. $f^{-1}(x) = \sqrt[3]{x}$
$\underline{\qquad} f(x) = \sqrt[5]{x-3}$	c. $f^{-1}(x) = \frac{x-5}{3}$
$\underline{\qquad} f(x) = x^3$	a. $f^{-1}(x) = \log_5 x$ b. $f^{-1}(x) = \sqrt[3]{x}$ c. $f^{-1}(x) = \frac{x-5}{3}$ d. $f^{-1}(x) = \frac{x}{3} - 5$ e. $f^{-1}(x) = \log_3 x$ f. $f^{-1}(x) = x^5 + 3$ g. $f^{-1}(x) = \sqrt[5]{x}$
$\underline{\qquad} f(x) = 5^x$	e. $f^{-1}(x) = log_3 x$
$\underline{\qquad} f(x) = 3(x+5)$	f. $f^{-1}(x) = x^5 + 3$
$\underline{\qquad} f(x) = 3^x$	g. $f^{-1}(x) = \sqrt[5]{x}$
	I

3.	a.	The inverse function of a linear function is
	b.	The inverse function of a quadratic function is
	с.	The inverse function of an exponential function is

Refresh Your Memory

4. Calculate the composition for each pair of functions.

a.
$$f(x) = \frac{3}{4}x + 6$$
 $g(x) = \frac{4(x-6)}{3}$
 $f(g(x)) = g(f(x)) =$

b.
$$m(x) = (x+3)^2$$
 $n(x) = \sqrt{x} - 3$
 $m(n(x)) =$ $n(m(x)) =$

5. Label the graph of each function from #4.

6. Graph the line y = x on each of the above graphs.

Describe how the line y = x is related to the two functions on each graph. Does this have anything to do with your answers to #4? Explain.

7. How do you have to limit the domain of m(x) so its inverse will be a function?