\qquad Period: \qquad Date: \qquad

Assignment 1.4

Use the functions $\quad f(x)=\sqrt{x}-1 \quad$ and $\quad g(x)=x^{2}+7$

1. a. Calculate $f(16)$ and $g(3)$.
b. Write the ordered pair for $f(16)$ and $g(3)$.
c. What do the ordered pairs you wrote in b imply?
d. Find the inverse function for $f(x)$. Are $f(x)$ and $g(x)$ inverse functions? Explain.
2. Match each function with its inverse.

$f(x)$	$f^{-1}(x)$
$f(x)=3 x+5$	a. $f^{-1}(x)=\log _{5} x$
$f(x)=x^{5}$	b. $f^{-1}(x)=\sqrt[3]{x}$
$f(x)=\sqrt[5]{x-3}$	c. $f^{-1}(x)=\frac{x-5}{3}$
$f(x)=x^{3}$	d. $f^{-1}(x)=\frac{x}{3}-5$
$f(x)=5^{x}$	e. $f^{-1}(x)=\log _{3} x$
$f(x)=3(x+5)$	f. $f^{-1}(x)=x^{5}+3$
$f(x)=3^{x}$	g. $f^{-1}(x)=\sqrt[5]{x}$

3. a. The inverse function of a linear function is \qquad .
b. The inverse function of a quadratic function is \qquad .
c. The inverse function of an exponential function is \qquad .

Refresh Your Memory

4. Calculate the composition for each pair of functions.
a. $\quad f(x)=\frac{3}{4} x+6$

$$
g(x)=\frac{4(x-6)}{3}
$$

$$
f(g(x))=
$$

$$
g(f(x))=
$$

b. $\quad m(x)=(x+3)^{2}$
$n(x)=\sqrt{x}-3$
$m(n(x))=$

$$
n(m(x))=
$$

5. Label the graph of each function from \#4.

6. Graph the line $y=x$ on each of the above graphs.

Describe how the line $y=x$ is related to the two functions on each graph. Does this have anything to do with your answers to \#4? Explain.
7. How do you have to limit the domain of $m(x)$ so its inverse will be a function?

